Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nat Microbiol ; 8(4): 679-694, 2023 04.
Article in English | MEDLINE | ID: covidwho-2286127

ABSTRACT

Some viruses restructure host chromatin, influencing gene expression, with implications for disease outcome. Whether this occurs for SARS-CoV-2, the virus causing COVID-19, is largely unknown. Here we characterized the 3D genome and epigenome of human cells after SARS-CoV-2 infection, finding widespread host chromatin restructuring that features widespread compartment A weakening, A-B mixing, reduced intra-TAD contacts and decreased H3K27ac euchromatin modification levels. Such changes were not found following common-cold-virus HCoV-OC43 infection. Intriguingly, the cohesin complex was notably depleted from intra-TAD regions, indicating that SARS-CoV-2 disrupts cohesin loop extrusion. These altered 3D genome/epigenome structures correlated with transcriptional suppression of interferon response genes by the virus, while increased H3K4me3 was found in the promoters of pro-inflammatory genes highly induced during severe COVID-19. These findings show that SARS-CoV-2 acutely rewires host chromatin, facilitating future studies of the long-term epigenomic impacts of its infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Chromatin
2.
Theranostics ; 12(6): 2963-2986, 2022.
Article in English | MEDLINE | ID: covidwho-1780235

ABSTRACT

Many factors such as trauma and COVID-19 cause acute kidney injury (AKI). Late AKI have a very high incidence and mortality rate. Early diagnosis of AKI provides a critical therapeutic time window for AKI treatment to prevent progression to chronic renal failure. However, the current clinical detection based on creatinine and urine output isn't effective in diagnosing early AKI. In recent years, the early diagnosis of AKI has made great progress with the advancement of information technology, nanotechnology, and biomedicine. These emerging methods are mainly divided into two aspects: First, predicting AKI through models construct by machine learning; Second, early diagnosis of AKI through detection of newly-discovered early biomarkers. Currently, these methods have shown great potential and become an attractive tool for the early diagnosis of AKI. Therefore, it is very important to discuss and summarize these methods for the early diagnosis of AKI. In this review, we first systematically summarize the application of machine learning in AKI prediction algorithms and specific scenarios. In addition, we introduce the key role of early biomarkers in the progress of AKI, and then comprehensively summarize the application of emerging detection technologies for early AKI. Finally, we discuss current challenges and prospects of machine learning and biomarker detection. The review is expected to provide new insights for early diagnosis of AKI, and provided important inspiration for the design of early diagnosis of other major diseases.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Biomarkers/urine , COVID-19/diagnosis , Creatinine , Early Diagnosis , Humans , Lipocalin-2
3.
Front Med ; 15(3): 486-494, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1122810

ABSTRACT

Tocilizumab has been reported to attenuate the "cytokine storm" in COVID-19 patients. We attempted to verify the effectiveness and safety of tocilizumab therapy in COVID-19 and identify patients most likely to benefit from this treatment. We conducted a randomized, controlled, open-label multicenter trial among COVID-19 patients. The patients were randomly assigned in a 1:1 ratio to receive either tocilizumab in addition to standard care or standard care alone. The cure rate, changes of oxygen saturation and interference, and inflammation biomarkers were observed. Thirty-three patients were randomized to the tocilizumab group, and 32 patients to the control group. The cure rate in the tocilizumab group was higher than that in the control group, but the difference was not statistically significant (94.12% vs. 87.10%, rate difference 95% CI-7.19%-21.23%, P = 0.4133). The improvement in hypoxia for the tocilizumab group was higher from day 4 onward and statistically significant from day 12 (P = 0.0359). In moderate disease patients with bilateral pulmonary lesions, the hypoxia ameliorated earlier after tocilizumab treatment, and less patients (1/12, 8.33%) needed an increase of inhaled oxygen concentration compared with the controls (4/6, 66.67%; rate difference 95% CI-99.17% to-17.50%, P = 0.0217). No severe adverse events occurred. More mild temporary adverse events were recorded in tocilizumab recipients (20/34, 58.82%) than the controls (4/31, 12.90%). Tocilizumab can improve hypoxia without unacceptable side effect profile and significant influences on the time virus load becomes negative. For patients with bilateral pulmonary lesions and elevated IL-6 levels, tocilizumab could be recommended to improve outcome.


Subject(s)
COVID-19 Drug Treatment , Antibodies, Monoclonal, Humanized , Humans , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL